

Étude de l'éclairage d'une salle de classe

version 1

Lætitia Ferré

janvier 2012

Table des matières

Objectifs	5
Introduction	7
I - Les procédés d'éclairage	9
A. Différentes familles d'appareils d'éclairage	
B. Caractéristiques des sources lumineuses	
C. Comparaison des différentes lampes	
D. Exercice: Les différentes technologies	
E. Exercice : Température de couleur	15
II - Notion de physique	17
A. Le spectre lumineux	
B. Grandeurs photométriques	
C. Exercice : Lampe à incandescence	21
D. Exercice: Lampe à vapeur de mercure	21
E. Exercice : Éclairage d'un atelier	21
III - Les luminaires	23

A. Mode d'éclairage	.2 3
B. Classification photométrique des luminaires	25
C. Exercice	26
IV - Avant-projet d'éclairage	27
A. Nature de l'activité prévue	27
B. La salle, ou le lieu à éclairer	28
1.Dimensions	28
C. Calculs	30
1.Flux lumineux à fournir	31
D. Exercice	32
V - Exercice : Éclairage de l'atelier des classes de STI2D	<i>3</i> 3

Réaliser un projet d'éclairage consiste à déterminer l'éclairage artificiel qu'il faut installer dans un lieu afin de l'adapter à une activité donnée, en tenant compte du confort visuel que requiert cette activité (suivant les réglementations en vigueur).

C'est ce à quoi nous allons nous intéresser dans ce module.

Introduction

La réforme des formations STI implique une réorganisation complète des enseignements, des ateliers et des salles de classes.

Ainsi, l'ancien atelier des BAC STI Productique qui comportait des machines d'usinages (tours, fraiseuses, perceuses) est en cours de réhabilitation et deviendra une salle de classe et comportera des postes informatiques.

Outre les modifications de l'installation électrique :

- · suppression des alimentation par rail de type Canalis,
- augmentation du nombre de prises de courant 2P+PE,
- câblage de prise RJ45 pour connexion au réseau informatique.

il est possible que l'éclairage soit inadapté à l'utilisation future de cette zone.

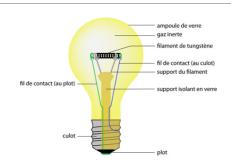
On vous demande de faire un bilan de l'installation existante et de proposer les modifications nécessaires.

Pour ce faire, il convient de connaître les notions de photométrie et d'éclairagisme.

Ancien atelier de productique en cours de réhabilitation

Les procédés d'éclairage

Différentes familles d'appareils d'éclairage	9
Caractéristiques des sources lumineuses	11
Comparaison des différentes lampes	14
Exercice : Les différentes technologies	15
Exercice : Température de couleur	15


A. Différentes familles d'appareils d'éclairage

1. Lampes à incandescence

Principe

Un filament en tungstène est porté à une température de 2250° à 2400°.

Pour éviter la détérioration du filament, on le place à l'abri de l'oxygène dans une ampoule contenant un gaz inerte (argon, krypton).

Lampe à filament de tungstène

Complément : Lampe à iode (halogène)

La lampe à Iode est une variante de la précédente.

Ces lampes à iodes ont une efficacité supérieure, un flux lumineux constant, ne noircissent pas et durent deux fois plus longtemps.

•

2. Les lampes à fluorescence

Principe

On provoque une décharge électrique dans un tube contenant de l'argon et une très faible quantité de mercure. Elle entraîne l'ionisation du gaz, qui entraîne à son tour la vaporisation du mercure.

C'est la phase d'amorçage du tube. Elle nécessite une tension assez élevée.

Une fois l'ionisation réalisée, une tension plus faible suffit pour entretenir le déplacement des électrons dans le tube, de la cathode vers l'anode. Sur leur parcours, les électrons entrent en collision avec les atomes de mercure. Chaque collision libère des photons, qui donnent des rayons ultraviolets, invisibles

Tube fluorescent

Aussi l'intérieur du tube est-il tapissé de poudres fluorescentes qui, excitées par les rayons ultraviolets, vont émettre la majeure partie de la lumière utile.

Simulateur: Principe de fonctionnement d'un tube fluorescent

3. Les tubes néons

Principe

Dans un tube comportant un gaz à faible pression, on dispose deux électrodes. En appliquant entre les électrodes une forte différence de potentiel, on constate l'apparition d'une lueur à l'intérieur du tube.

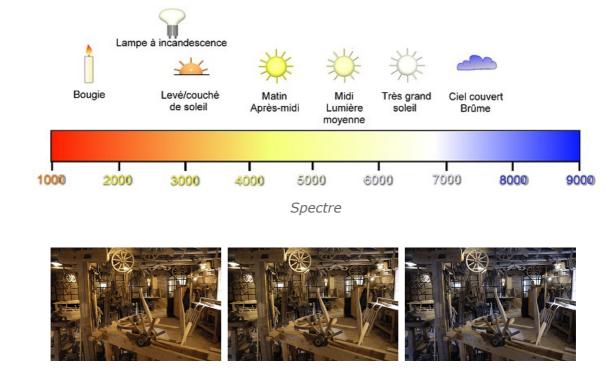
Ces tubes sont surtout utilisés pour les enseignes lumineuses et la décoration. La couleur varie selon la nature du gaz

Enseigne lumineuse

4. Lampes à décharge

L'ampoule ovoïde contient un mélange gazeux azote-argon, l'intérieur de l'ampoule est revêtue d'un poudrage fluorescent.

Lampe au mercure


B. Caractéristiques des sources lumineuses

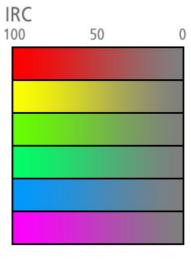
1. Le confort visuel

Température de couleur

Elle caractérise l'ambiance colorée (chaude ou froide) que les tubes fluorescents peuvent offrir.

Température apparente	Température de couleur
Chaude (blanc, rosé)	< 3000 °K
Intermédiaire (blanc)	3300 à 5500 °K
Froide (blanc, bleuté)	> 5500 °K

Température de couleur


Indice de rendu des couleurs

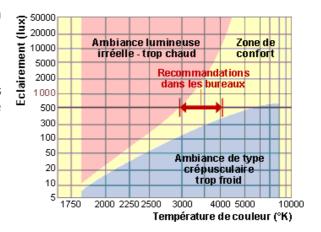
Il caractérise l'aptitude des lampes à ne pas déformer les couleurs habituelles des objets éclairés.

Il est compris entre 0 et 100.

S'il n'y a aucune différence d'aspect l'indice vaut 100.

Rendu des couleurs	IRC
Médiocre	60 < IRC < 80
Moyen	80 < IRC < 85
Bon	IRC > 85

Rendu des couleurs



Définition

La notion de confort visuel met en relation deux critères :

- Le niveau d'éclairement (en lux)
- La température des couleurs

La courbe ci-contre met en relation ces deux paramètres et fait apparaître une zone d'éclairage confortable.

Confort visuel

C. Comparaison des différentes lampes 1. Tableau comparatif

	Technologie	Utilisation	Avantages	Inconvénients
	Incandescence Standard	Usage domestique Eclairage localisé décoratif	Branchement direct sans appareillage intermédiaire Prix d'achat peu élévé Facile à recycler Allumage instantané Bon rendu des couleurs	Efficacité lumineuse faible Consommation électrique importante Forte dissipation de chaleur Faible durée de vie
	Incandescence halogène Éclairage ponctuel e intensif		Branchement direct Allumage instantané Excellent rendu des couleurs Facile à recycler	Efficacité lumineuse moyenne Forte dissipation de chaleur Consommation électrique importante
F	Tube fluorescent	Magasins, bureaux, ateliers Extérieurs	Efficacité lumineuse élevée Rendu des couleurs moyen	Puissance lumineuse unitaire faible Sensible aux températures extrêmes Difficile à recycler
Lampe fluo- compacte Usage domestique Bureaux Remplace les lampes à incandescence		Bonne efficacité lumineuse Bon rendu des couleurs sensensibles aux nombre de commutations	Investissement initial élevé par rapport aux lampes à incandescence Difficile à recycler	
tricolores, éclairage de secours)		Insensibles aux nombre de commutations Faible consommation d'énergie Basse température.	Prix relativement élevé Rendu des couleurs moyen Gamme de puissance réduite	

D. Exercice: Les différentes technologies

Pour chaque technologie, indiquez ce qui caractéristique le mieux la lampe.

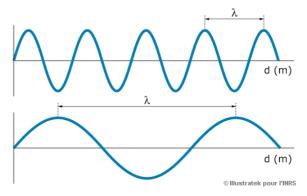
- i Très faible consommation d'énergie
- ii Prix encore élevé
- iii Forte dissipation de chaleur
- iv Puissance lumineuse unitaire faible
- v puissance réduite
- vi Consommation électrique importante
- vii Efficacité lumineuse élevée

Incandescence Standard ou Tube ou lampe fluorescents halogène

LED

E. Exercice : Température de couleur

désire un éclairement de 500 lux. Quelles températures de couleur maxi et mini rra-t-on utiliser ?
mini 2000 °K
mini 2500 °K
mini 3000 °K
mini 4000 °K
maxi 3000 °K
maxi 4500 °K
maxi 5500 °K
maxi 6500 °K
maxi 7500 °K
maxi 10000 °K

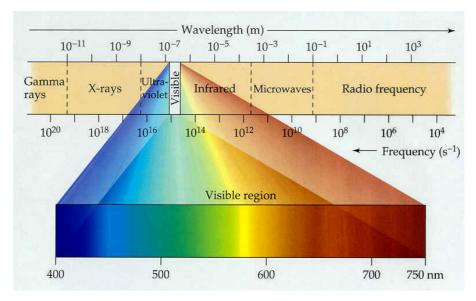


Le spectre lumineux	17
Grandeurs photométriques	18
Exercice : Lampe à incandescence	21
Exercice : Lampe à vapeur de mercure	22
Exercice : Éclairage d'un atelier	22

Le rayonnement lumineux est l'ensemble des radiations émises par une source lumineuse, c'est le phénomène physique de la propagation d'une énergie électromagnétique corpusculaire et ondulatoire.

La lumière est caractérisée par :

- une fréquence f en hertz (Hz)
- une longueur d'onde λ en nanomètre (1nm= 10-9m)
- une vitesse de propagation, dans le vide C=300 000km/s

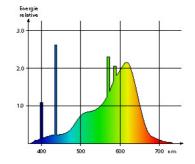

Longueur d'onde d'un signal

A. Le spectre lumineux

Chaque source lumineuse fournit un ensemble de radiations différentes.

Toutes les indications sont données par référence à la lumière du soleil.

Les radiations de la lumière visible ne représentent qu'une très faible partie de l'ensemble des radiations qui nous entourent. Elles sont classées en fonction de leur longueur d'onde (400 nm à 700 nm)


Spectre lumineux

Exemple: Spectre lumineux d'un tube fluorescent

Le spectre lumineux d'un tube fluorescent est dû d'une part au gaz ionisé, d'autre part à la substance fluorescente. Il n'est pas continu, mais composé d'une succession de raies de longueur d'onde différente.

La combinaison des poudres fluorescentes doit permettre un très bon rendement lumineux et un spectre se rapprochant de la lumière du jour.

En l'absence de poudre fluorescente, le courbe spectrale d'un tube fluorescent tube n'émet que des rayonnements ultraviolets, c'est ce qu'on appelle la lumière noire.

B. Grandeurs photométriques

Définition : La photométrie

La photométrie est la science qui étudie le rayonnement lumineux du point de vue de la perception par l'œil humain.

La plupart des appareils de mesure en photométrie, qui ne font pas intervenir directement l'œil en tant qu'élément sensible, sont étalonnés en fonction de la courbe de sensibilité relative de l'œil humain.

1. Flux lumineux

Définition

Le flux lumineux (θ ou F) est la puissance lumineuse émise par une source lumineuse.

Il permet de comparer l'efficacité lumineuse des différentes lampes, exprimée en lumens émis par watt de puissance électrique consommée (lm/W).

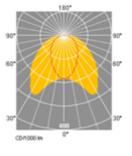
- θ en Lumen (lm)
- S: surface en m²
- E Eclairement en lux

Flux

2. Intensité lumineuse

Définition

L'intensité lumineuse (I) est la quantité de flux lumineux émise dans une direction particulière.


Elle permet de caractériser les luminaires en indiquant sur un graphe leur intensité lumineuse dans les différentes directions (pour une source lumineuse de 1 000 lm).

I = L.S avec :

- I en candelas (cd)
- L Luminance en cd/m²
- S surface en m²

Intensité

Graphe

3. Luminance

La luminance est l'intensité lumineuse produite (ou réfléchie) par une surface et vue d'une direction donnée

Elle décrit l'effet de la lumière sur l'œil.

$$L = \frac{I}{S}$$
 avec :

- L en candelas par m² (cd/m²)
- I Intensité lumineuse en candelas
- S surface en m²

Luminance

4. Éclairement

L éclairement est la quantité de flux lumineux éclairant une surface.

La grandeur la plus représentative de la qualité de l'éclairage est la luminance. C'est en effet la lumière réfléchie que perçoit l'œil humain. Cependant celle-ci étant difficilement mesurable, ce sera l'éclairement, représentant la lumière incidente, qui sera dans la pratique considéré.

$$E = \frac{\phi}{S}$$
 avec

- E en lumen par m² ou lux
- θ flux lumineux en lumens
- S surface en m²

5. Efficacité lumineuse

Afin de pouvoir comparer les différents procédés d'éclairage entre eux, on utilise plusieurs caractéristiques des sources lumineuses ; l'efficacité lumineuse est un critère important, mais n'est pas le seul à envisager.

Une lampe quelconque absorbe de l'énergie électrique et restitue de la lumière ; on fait donc le rapport entre le flux lumineux (1) fourni par la source lumineuse et la puissance électrique absorbée, et on obtient un coefficient d'efficacité lumineuse :

Coefficient d'efficacité =
$$\frac{flux\ lumineux\ fourni}{puissance\ électrique\ absorbée}$$

Le coefficient d'efficacité lumineuse s'exprime en lumens par watt (lm/W)

Le rendement d'une lampe ou efficacité lumineuse, est ce qui qualifie le rendement d'une source lumineuse avant qu'elle soit placée dans un luminaire.

$$fe \ ou \ \eta = \frac{\phi}{P} \ \text{avec} :$$

- fe ou η en lumens par Watt (lm/W),
- θ flux lumineux en lumens
- · P puissance en Watts

Exemple

Un tube fluorescent de 36 W fournit un flux lumineux de 3 450 lumens.

$$fe = \frac{flux\ lumineux}{puissance} = \frac{3450}{36} = 95\ lm/W$$

Les tubes fluorescents présentent une efficacité lumineuse bien meilleure que les lampes à incandescence dont l'efficacité lumineuse est d'environ 10 lm/W.

C. Exercice: Lampe à incandescence

Une lampe à incandescence porte les indications suivantes : 75 W - 230 V - 975 Im. Calculez son efficacité lumineuse.

0	3 lm/W	0	17 lm/W
0	4 lm/W	0	230 lm/W
0	13 lm/W		

D. Exercice : Lampe à vapeur de mercure

Une lampe à vapeur de mercure haute pression référence MAF 125 absorbe une puissance de 125 W et fournit un flux lumineux de 6250 lumens.

Calculez son efficacité lumineuse.

0	10 lm/W	0	200 lm/W
0	50 lm/W	0	400 lm/W
0	100 lm/W		

E. Exercice : Éclairage d'un atelier

On a mesuré sur le sol d'un atelier un éclairement de 150 lux. Sachant que cet atelier mesure 8 m par 24 m, calculez le flux lumineux à fournir

Notion de physique

0	150 lumens
0	196 lumens
0	28800 lumens
0	346 lumens

Les luminaires

Mode d'éclairage	23
Classification photométrique des luminaires	25
Exercice	26

Les luminaires sont des appareils d'éclairage ayant une triple fonction :

- Répartir le flux lumineux émis par la source (lampe).
- Équilibrer les luminances des lampes pour éviter l'éblouissement.
- Protéger la source lumineuse.

De plus il pourra être choisi suivant différents modes de poses :

- · encastré;
- · semi encastré;
- suspendu.

luminaire

A. Mode d'éclairage

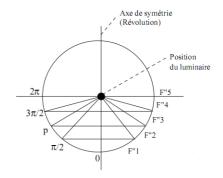
Selon la finalité de l'éclairage, la manière dont la lumière produite par une source est dirigée sur la surface à éclairer sera différente.

Ce rôle sera tenu par le luminaire.

Définition

Représentati on	Dési gna tion	Caractéristique
	Dire ct	Le flux lumineux est dirigé directement sur la surface à éclairer. Il est très économique. Il y a des risques d'éblouissement
	Sem	Cet éclairage permet d'éclairer légèrement le plafond, ce

Représentati on	Dési gna tion	Caractéristique
	i- direc t	qui peut améliorer l'ambiance lumineuse.
	Mixt e	C'est un compromis entre l'éclairage direct et indirect, avec les inconvénients et les avantages des deux systèmes.
	Sem i- indir ect	Ce mode d'éclairage permet d'atténuer les ombres, mais il est très peu utilisé.
	Indir ect	Il supprime l'éblouissement mais diminue les ombres et le relief. Son inconvénient majeur est son très mauvais rendement.


Tableau 1 Les modes d'éclairage

B. Classification photométrique des luminaires

Il y a des luminaires qui engendrent des cônes lumineux très évasés, d'autres très étroits. Ce critère très simple permet de construire 5 catégories de luminaires.

La répartition photométrique est caractérisée par les flux repérés de F1 à F5 conformément à la norme NF C 71-120.

D'après la norme NFC 71-121 les luminaires sont répartis en 20 classes repérées de A à T.

Répartition photométrique

Ex: éclairage direct et intensif A, B, C, D, E; indirect T

Classe	Catégorie de luminaire
A, B, C, D, E	F1 direct intensif
F, G, H, I,	F2 direct extensif
K, L, M, N	F3 semi-direct
O, P, Q, R, S	F4 mixte
Т	F5 indirect

Définition : Symbole photométrique

Le flux lumineux émis par un appareil se divise en deux parties.

- 1. Une partie émise vers le plafond (lettre T),
- 2. Une partie orientée vers le sol (lettre A ou J).

Devant chacune de ces lettres on indique la valeur du rendement de ces émissions de flux lumineux.

Exemple : 0,39 D + 0,26 T

0,39	D	0,26	Т
39 % du flux des lampes part en direct (vers le bas)	répartition selon la norme C 71-121	26 % du flux des lampes part en indirect (vers le haut)	éclairage indirect

Tableau 2 Symbole photométrique

C. Exercice

Sur la documentation relative au luminaire Mazda Norka (2 \times 36W) on trouve l'indication : **0,54 H + 0,37 T**.

Que signifient ces termes ?

- 1. la lettre T qui correspond à l'éclairage
- 2. 54 % du flux lumineux dirigé
- 3. 37 % du flux lumineux diffusé par le luminaire
- 4. indirect (catégorie F5).
- 5. 0,37 T correspond à
- 6. vers le haut
- 7. direct extensif (catégorie F2),
- 8. vers le bas,
- 9. 0,54 H correspond à
- 10. la lettre H indique qu'il s'agit d'un éclairage

Réponse : ____ ___ ___ ___ ___ ___ ____ ____

Avant-projet d'éclairage

Nature de l'activité prévue	27
La salle, ou le lieu à éclairer	28
Calculs	30
Exercice	32

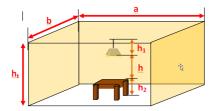
Réaliser un projet d'éclairage consiste à déterminer l'éclairage artificiel qu'il faut installer dans un lieu afin de l'adapter à une activité donnée, en tenant compte du confort visuel que requiert cette activité.

Nous devons connaitre:

- · la nature de l'activité prévue;
- · les dimensions;
- la couleur des murs et du plafond.

A. Nature de l'activité prévue

Les niveaux d'éclairement


Suivant la nature de l'activité, la norme impose une quantité ainsi qu'une qualité d'éclairement.

Nature des locaux	Éclairement recommandé en lux	Nature des locaux	Éclairement recommandé en lux	Nature des locaux	Éclairement recommandé en lux
Habitations Salles de bains : éclairage général Miroirs sur le visage Chambres à coucher : éclairage général Lits et miroirs	100 500 175 500	Bibliothèques Éclairement vertical des rayonnages Tables de lecture Établissements d'enseignement	200 500	Hôtels, restaurants, cafés Cuisines Chambre à coucher (éclairage général) Miroirs de lavabo - sur le visage Salles à manger, salles de café, salles de restaurant, salon d'hôtel	200 100 500
Cuisines : fourneaux, éviers, tables Salles de séjour : éclairage général Lecture intermittente Lecture prolongée Travail d'écolier à la maison	425 200 150 500 325	Salles de classe, salles de conférence, amphithéâtres, laboratoires Classes d'enfants à vue anormale (amblyopes) Salles de dessin industriel	425 700	Ateliers de mécanique générale • Postes de contrôles (suivant dimensions des détails) Minuscule Très fin	3 000 1 500
Salles de spectacles Foyer Salle de théâtre, de concert ou de cinéma (pendant les entractes) Pupitres d'orchestre	125 250 500	(sur les tables) Salles de dessin d'art Salles de couture	850 500 425 à 625	Fin Assez fin Moyen • Ateliers de montage	1 000 500 300 0 à 1 750
Culture physique, gymnases et sports Tennis ouvert Entraînement Compétition Basket Entraînement Compétition	250 500 250 500	Hôpitaux et cliniques Laboratoires (pathologie et recherches) Salles d'opération (éclairage général) Lits de malades (examen et lecture) Salles d'examen	500 500 200 500	Petites pièces Pièces moyennes Grosses pièces • Machines-outils et établis Éclairage général Éclairage localisé :	625 425 200 300
Manège d'équitation Bassin de piscine	100 100	Magasins sur rues très passantes Vitrines sur rue	5 000	 pour travail très délicat (vérification au calibre, rectifica- tion de pièces de précision, etc.) 	1 500
Bureaux Tenue de livres, dactylographie, comp- tabilité, machines à calculer, fiches et comptoirs de caissiers	600	Présentations spéciales sur comptoirs et en vitrines intérieures Éclairage général	1 000 500	 pour travail de petites pièces, rectification de pièces petites ou moyennes, réglage de machines automatiques 	700
Travaux généraux de bureau autres que ci-dessus Salles de dessin	200	Magasins sur rues secondaires Vitrines sur rue	1 000	 pour travail de pièces moyennes, rectification de grosses pièces Soudage et brasage 	500
 éclairage général éclairage sur les tables 	150 1 000	Comptoirs et vitrines intérieures Éclairage général	500 300	De finesse moyenne En électronique	250 700

Éclairements recommandés en fonction de la nature des locaux

B. La salle, ou le lieu à éclairer

1. Dimensions

Dimensions du local

lumineuse « h »

- Longueur « a »
- Largeur « b »
- Hauteur total « ht »
- Hauteur plan utile « h2 »
- Hauteur suspension source lumineuse « h1»
- Hauteur plan de travail /source

2. Les caractéristiques du local

facteurs : K et J

On utilise pour cela les facteurs : K et J

Définition : Indice du local

$$K = \frac{a \times b}{(a+b) \times h}$$
 avec :

- a = longueur du local en m
- b = largeur du local en m
- h = hauteur du luminaire au dessus du plan utile en m

On arrondit les valeurs de K aux nombres : 0,6 - 0,8 - 1 - 1,25 - 1,5 - 2 - 2,5 - 3 - 4 - 5

Définition : Rapport de suspension

$$j = \frac{h_1}{h + h_1} \text{ avec} :$$

- h = hauteur du luminaire au-dessus du plan utile (m)
- h' = hauteur de suspension du luminaire (m)

On ne retient que deux valeurs :

- j = 0 soit luminaire contre le plafond,
- j = 1/3 luminaire suspendu.

Facteur de réflexion

Suivant la couleur des différentes parois, la réflexion de la lumière sera plus ou moins importante, ce qui se traduit pour les calculs par un coefficient de réflexion donné par le tableau ci-dessous.

	très clair	clair	moyen	sombre	nul
Plafond	8	7	5	3	0
Murs	7	5	3	1	0
Plan utile	3	3	1	1	0

Tableau 3 Facteur de réflexion

Pour éviter une surcharge des tableaux, ils ne sont pas donnés en pourcentage, mais par le chiffre des dizaines de cette valeur.

Exemple: 753 signifie:

réflexion du plafond 70%, réflexion des murs 50%, réflexion du plan utile 30%

3. L'utilance

C'est le rapport du flux utile (reçu par le plan utile) au flux total sortant des luminaires.

Son symbole est U. On détermine le facteur d'utilance à l'aide de tableaux comportant trois variables:

- a) la valeur de j facteur de suspension;
- b) la valeur de K indice du local;
- c) les facteurs de réflexion des parois.

	JMIN BLEAU)					(\supset
	cteurs réflexion	873	871	773	771	753	751	731	711	551	531	511	331	311	000
	0.60	71	66	70	65	58	55	49	44	54	48	44	48	44	42
	0.80	82	74	80	73	68	64	58	53	63	57	53	57	53	51
	1.00	90	81	87	79	76	71	65	61	70	65	60	64	60	58
local	1.25	97	86	94	85	84	77	72	68	76	71	67	70	67	65
	1.50	102	90	99	88	89	82	77	73	80	76	72	75	72	70
큥	2.00	109	95	105	93	97	88	84	81	86	83	80	82	79	77
Ce	2.50	113	98	110	96	103	92	89	85	90	87	84	86	83	81
Indice	3.00	116	100	112	98	106	95	92	89	93	90	88	89	87	84
_	4.00	120	102	116	101	111	98	95	93	96	94	92	92	90	88
	5.00	122	103	118	102	113	99	97	95	97	96	94	94	92	90

Utilance Classe C - j=0

C. Calculs

1. Flux lumineux à fournir

Formule

$$\overline{F = \frac{E \times a \times b}{U \times \eta}} \text{ avec}$$

- E = éclairement demandé (en lux)
- a = longueur du local (en m)
- b = largeur du local (en m)
- U = facteur d'utilance

 η = rendement du luminaire

Remarque : Facteurs de dépréciation (d)

En cours d'utilisation, le flux émis par une lampe baisse; les causes sont diverses:

- les lampes se couvrent de poussière; les parois du local sont moins réfléchissantes:
- les lampes ont tendance à s'user et le flux lumineux produit diminue;
- selon la maintenance, changement périodique des lampes.

Niveau d'empoussiérage	Facteur d'empoussiérage	Facteur lampes	Facteur maintenance	compensateur de dépréciation
Faible	0,9	0,9	0,8	1,25
Moyen	0,8	0,9	0,7	1,40
Élevé	0,7	0,9	0,6	1,60

Le facteur compensateur de dépréciation est le chiffre par lequel il faut multiplier l'éclairement moyen en service pour connaître le flux à installer initialement;

$$F' = F \times d$$

2. Nombre de luminaires

Connaissant le flux lumineux total (F), et le flux lumineux produit par chaque luminaire (F_L) on en déduit le nombre de luminaires à installer (N).

$$N = \frac{F}{n \times F_I}$$
 avec n : nombre de sources lumineuses par luminaire.

3. Implantation des sources

Le tableau ci-dessous donne des coefficients de distance maximale entre deux luminaires, en fonction de la classe du luminaire.

Classe	Distance maximale entre deux luminaires			
А	1 x h			
В	1,1 x h			
С	1,3 x h			
D	1,6 x h			
Е	1,9 x h			
F	2 x h			
G	2 x h			
Н	1,9 x h			
I	2 x h			
J	2,3 x h			

Exemple

Luminaire et classe C → 1,3 dans un local de hauteur 3 m avec luminaires encastrés dans le plafond, longueur 10 m largeur 7,50 m.

Calculs:

Distance entre luminaire = h = 3 m - 0.85 = 2.15. (0.85 = hauteur du plan utile inter-distance).

$$d1 = 2,15 \times 1,3 = 2,80 \text{ m}$$

Dans le sens longitudinal on aura :

$$\frac{a}{d1} = \frac{10}{2,8} = 3,57 \text{ soit 4 luminaires au moins.}$$

Dans le sens transversal on aura :

$$\frac{b}{d_1} = \frac{7.5}{2.80} = 2.67 \text{ soit 3 luminaires au moins.}$$

On retient les valeurs de 4 luminaires dans le sens longitudinal et 3 dans le sens

transversal.

D. Exercice

Un magasin a été réaménager, une partie de la salle dévolue à la vente est désormais réservée aux caisses de paiement.

A combien faudra-t-il porter l'éclairement ?

0	100 lux
0	200 lux
0	300 lux
0	500 lux
0	750 lux

Problématique

Maintenant que nous avons vu les notions nécessaires, nous pouvons faire l'étude de l'éclairage de l'atelier des classes de STI2D.

L'AFE (Association Française d'Eclairage) recommande des niveaux d'éclairement minimum à garantir afin d'offrir un confort visuel en accord avec le travail à effectuer.

Ancien atelier de productique en cours de réhabilitation

Nous allons réaliser l'étude de

l'éclairage en étant conforme à ces recommandations.

Pour mener à bien ce projet, nous utiliserons les documents ressource suivants :

- · Tableau du niveau éclairement recommandé
- Documentations techniques de fabricant d'appareil d'éclairage

Les sources lumineuses seront directement fixées au plafond.

Les luminaires seront des Philips TCS 260 équipés de tubes fluorescents Philips TL HO 49W 840.

Les murs, le plafond et le plan de travail sont de couleur claire.

Question 1

Nous allons tout d'abord mesurer le niveau d'éclairement actuel de la salle à l'aide d'un luxmètre.

Luxmètre

Question 2

La valeur que nous mesurée précédemment est-elle suffisante pour l'utilisation qui est prévue de cette salle.

Indices:

Cette zone était un atelier d'usinage

Zones, tâches,	Eclairement moyen	UGR –	Indice de rendu
activités	à maintenir (lux)	Valeur maximale	des couleurs – R _a
	Valeur minimale		Valeur minimale
Zone de circulation et couloirs	100	28	40
Escaliers, quai de chargement	150	25	40
Magasins, entrepôts	100	25	60
Magasins de vente, zone de vente	300	22	80
Zone de caisse	500	19	80
Espaces publics, halls d'entrée	100	22	80
Guichets	300	22	80
Restaurants, hôtels Réception, caisse, concierge	300	22	80
Cuisines	500	22	80
Bâtiments scolaires, salle de classe en primaire et secondaire	500	19	80
Salle de conférences	500	19	80
Salle de dessin industriel	750	16	80
Eclairage des bureaux :			
- classement	300	19	80
 dactylographie, lecture 	500	19	80
– poste CAO	500	19	80
– réception	300	22	80
– archives	200	25	80

Niveau d'éclairement

Nous constatons qu'il faut donc faire une nouvelle étude pour être conforme aux recommandations de de l'APE.

Nous allons commencer par recueillir les données du local.

Question 3

Donnez les dimensions du local:

- Longueur:
- Largeur:
- Hauteur:
- · Hauteur du plan utile :

Question 4

Définissez la couleur du plafond, des murs et du plan utile et donnez les facteurs de réflexions correspondants ainsi que le facteur global de la pièce.

Surface	Couleur	Facteur de réflexion
Plafond		
Murs		
Plan utile		

Facteur de réflexion global :

Question 5

Déterminez le rapport de suspension j.

Question 6

Déterminez l'indice du local K.

Indice:

Les valeurs de K seront arrondis à 0,6 - 0,8 - 1 - 1,25 - 1,5 - 2 - 2,5 - 3 - 4 ou 5.

Question 7

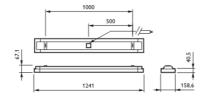
Déterminez l'indice de dépréciation d.

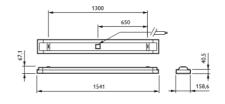
Caractéristique photométrique du plafonnier

Nous allons maintenant déterminer les caractéristiques photométrique du plafonnier.

Conditions at top of lumen curve at Tamb, = approx. 35 °C								
Lamp type	Colour	Discharge current mA	Lamp voltage V	Lamp power VV	Luminous flux Im	Luminous efficacy Im/W	Luminance cd/m ²	
TLS HO 24W	/827, /830, /840, /850 /865	300	75 a B	22,5	2000 1900	89 84	2,5 × 10 ⁴ 2,4 × 10 ⁴	
TLS HO 39W	/827, /830, /840 /865	340	112 ± 10	38.0	3500 3300	92 87	2.8 x 10 ⁴ 2.7 x 10 ⁴	
TLS HO S4W	/827, /830, /840, /850 /865	460	118 ± 10	53,B	5000 4750	93 88	2.9 x 10 ⁴ 2.8 x 10 ⁴	
TLS HO 49W	/827, /830, /840 /865	260	191 a 20	49,3	4900 4650	99 94	2,3 x 10 ⁴ 2,2 x 10 ⁴	
TL5 HO 80W	/830, /840 /865	555	145 ± 15	80.0	7000 6650	88 83	3.3 × 10 ⁴ 3.1 × 10 ⁴	

Tubes fluorescents Philips




EFix Optique D6

Présentation

Plafonnier EFix TCS260 à optique D6 Existe en version Blanc (RAL 9016) ou gris (RAL 9006) sur demande Installation

- · L'installation est réalisée par l'intermédiaire de brancards fournis
- Pour installer le luminaire en suspension, commander un Kit ZCS260 SME
- Pour mettre plusieurs luminaires en ligne, commander une (des) pièce(s) de couplage ZCS260 CPS

2011	
CE	
ENEC	
EN60598	
IP 20	
IK07	
Classe I	
960°	

Désignation	Puissance (W)	Poids (kg)	Photométrie	Code		
Blanc, lampes 840 montées, alimentation électronique HFP						
 TCS260 2x28W/840 HFP D6 WH 	62	3,2	0,67B	61220200		
 TCS260 2x35W/840 HFP D6 WH 	76	3,9	0,67B	612240 00		
 TCS260 2x49W/840 HFP D6 WH 	106	4	0,63B	612288 00		
 Lampe(s) fournie(s) Produits équipés d'alimentations électroniq 	ues, pour des coi	nsommations d'	énergie réduites			

35W/49W

- Lampes montées
 MASTER TL5 HE Super 80
 MASTER TL5 HO Super 80

Optiques

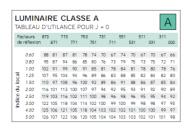
D6 : Rendement 0,67B (2x35W) Ventelles tri-dimensionnelles fermées et flancs en aluminium satiné.

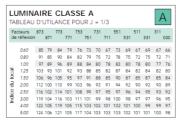
Luminaires Philips

Question 8

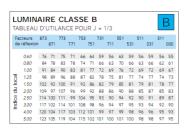
Indiquer le rendement direct et indirect du luminaire choisi.

Question 9

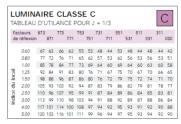

Déterminez la classe du luminaire.

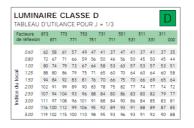

Utilance

Choisissez le tableau correspondant à la classe du luminaire (Lettre) et au rapport de suspension (j=0 ou j= $\frac{1}{3}$).


Question 10

Relevez le facteur d'utilance. Ce chiffre correspond au centième d'utilance





Utilances

Question 11

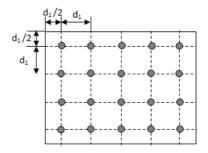
Calculez le flux lumineux total à fournir

Question 12

Quelle est le flux lumineux fourni par un tube ?

Question 13

Déterminer le nombre de luminaires


Indice:

On rappelle que le luminaire choisi comporte deux tubes.

Question 14

Indiquez quelle doit être l'implantation des luminaires en calculant :

- l'interdistance d1
- le nombre de luminaires dans le sens longitudinal,
- le nombre de luminaires dans le sens transversal.

Répartition des luminaires