
LE TRANSFORMATEUR REEL

. I Présentation

Le transformateur est un convertisseur statique, alternatif / alternatif. Il est soit élévateur, soit abaisseur de tension ou de courant. Il peut également être utilisé comme élément isolant entre deux circuits

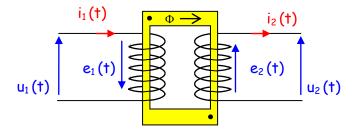
On utilise l'un des deux symboles suivants :

. a Le circuit magnétique

Un transformateur est un quadripôle composé de deux enroulements non reliés électriquement mais enlaçant un circuit magnétique commun.

. b Les enroulements

Le circuit magnétique est constitué par un empilage de tôles minces et isolées entre elles par un vernis, il est donc feuilleté, pour diminuer les pertes dues aux courants de foucault. Il est formé d'un alliage limitant les pertes par hystérésis.


Chaque enroulement est constitué de spires isolées entre elles par un vernis. Les deux enroulements sont placés autour d'un noyau magnétique afin de diminuer les fuites magnétiques et d'augmenter le champ.

L'enroulement qui comporte le nombre de spires le plus élevé est l'enroulement haute tension, il est constitué d'un fil plus fin que l'autre enroulement basse tension.

. c Les notations usuelles

Les grandeurs relatives au primaire sont affectées de l'indice \ll_1 », celles relatives au secondaire sont affectées de l'indice \ll_2 ».

- Le nombre de spires des enroulements : N_1 ; N_2 .
- La valeur des résistances des enroulements, en ohms $[\Omega]$: R_1 ; R_2 .
- La valeur instantanée des tensions, en volts [V]: $u_1(t)$; $u_2(t)$.
- La valeur instantanée des f.e.m induites, en volts [V]: $e_1(t)$.; $e_2(t)$.
- La valeur des flux magnétiques, en webers [Wb]: $\Phi_1(t)$; $\Phi_2(t)$.

Nous choisissons un sens arbitraire pour le flux Φ (†), ici le sens d'une ligne de champ. Les autres signes en découlent. Les sens des courants i_1 (†) et i_2 (†) sont pris de telle façon que les flux créés soient positifs donc additifs. Le primaire est un récepteur, nous adoptons la convention « récepteur », le secondaire est un générateur, nous adoptons la convention « générateur ».

Les f.e.m e_1 (t) et e_2 (t) sont de sens opposé aux flux Φ_1 (t) et Φ_2 (t) ,d'après la loi de Faraday :

$$e_1(t) = -\frac{d\Phi_1(t)}{dt}$$

$$e_1(t) = -\frac{d\Phi_1(t)$$

$$e_{2}(t) = -\frac{d\Phi_{2}(t)}{dt}$$

$$e_{1}(t)$$

$$\Phi_{2}(t)$$

$$\Phi_{2}(t)$$

$$\Delta \Phi_{2}(t)$$

$$\Delta \Phi_{3}(t)$$

$$\Delta \Phi_$$

. d Les bornes homologues

Les bornes marquées par un point sont dites homologues. Ce sont des bornes telles qu'un courant entrant corresponde à un flux positif, les tensions qui pointent vers ces points sont en phase.

. e Le principe de fonctionnement

Les transformateurs utilisent le phénomène d'induction électromagnétique. La bobine du primaire est soumise à une tension variable. Elle engendre un courant de même type, introduisant un champ magnétique, donc un flux variable, d'où la création d'une f.e.m variable. De plus, grâce au circuit magnétique, la variation de flux au primaire entraîne une variation de flux magnétique au secondaire et donc une nouvelle f.e.m induite.

. f le flux magnétique

La tension sinusoïdale u_1 (t), de pulsation ω , crée à travers chaque spire, un flux ϕ (t), sinusoïdal de même pulsation et déphasé de $-\frac{\pi}{2}$ par rapport à la tension u_1 (t):

$$\Phi(t) = \frac{U_1}{\sqrt{2}} N_1 \cdot \omega \cdot \cos(\omega t - \frac{\pi}{2})$$
 Si $u_1(t) = U_1 \sqrt{2} \cdot \cos(\omega t)$

. g Formule de Boucherot

L'amplitude maximale du champ magnétique, \hat{B} , ne dépend que de la valeur efficace de la tension appliquée au primaire u_1 (†), de la section droite et constante du circuit magnétique s, et enfin de la fréquence f, fixée par le réseau.

$$\hat{\beta} = \frac{U_1}{4.44.\text{N.f.s}}$$

$$\hat{\beta} = \frac{U_1}{4.44.\text{N.f.s}}$$

$$\text{La valeur maximale du flux magnétique, en teslas [T]}$$

$$U_1 \quad \text{La valeur efficace de la tension } u_1(t), \text{ en volts } [V]$$

$$f \quad \text{La fréquence f du réseau utilisé est exprimée en hertz } [Hz]$$

$$s \quad \text{La section droite est exprimée en mètres}^2 [m^2]$$

Attention la relation précédente n'est vraie qu'en utilisant les données du primaire U_1 et N_1 , en effet la valeur maximale du champ magnétique \hat{B} ne se retrouve pas dans tous les cas au secondaire, notamment lorsque l'on tient compte des pertes magnétiques.

. II Le transformateur parfait

. a Les hypothèses simplificatrices

L'intensité du courant à vide i_{10} (t) est nulle, le transformateur parfait fonctionnant à vide ne consomme aucun courant, il n'est donc le siège d'aucune perte.

. b Le rapport de transformation du transformateur

Nous appelons m, le rapport de transformation du transformateur. Cette grandeur est, par définition, le rapport entre le nombre de spires au secondaire par rapport au nombre de spires au primaire, soit :

$$m = \frac{N_2}{N_1}$$

 $m = \frac{N_2}{N_1}$ m Rapport de transformation [sans unités] N_2 Le nombre de spires de au secondaire [sans unités] N_2 Le nombre de spires de au primaire [sans unités]

. c Les relations entre les tensions pour le transformateur parfait

A chaque instant, chaque spire est traversée par le même flux magnétique.

Au primaire :

 $e_{1}(t) = -N_{1} \frac{d\Phi_{1}(t)}{dt}$ $u_{1}(t) = -e_{1}(t)$ $e_{2}(t) = -N_{2} \frac{d\Phi_{2}(t)}{dt}$ $u_{2}(t) = -e_{2}(t)$ Au secondaire :

 $\mathbf{m} = -\frac{\mathbf{u}_2(\dagger)}{\mathbf{u}_1(\dagger)}$ Donc:

Cette relation indique que les tensions $u_1(t)$ et $u_2(t)$ sont en opposition de phase.

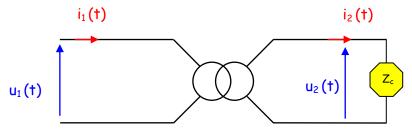
La relation entre les valeurs efficaces U_1 et U_2 ne tient pas compte du déphasage :

$$m = \frac{U_2}{U_1}$$

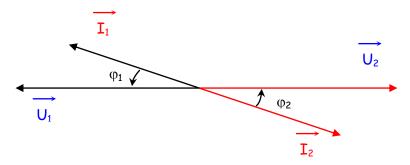
m Rapport de transformation [sans unités] $U_2 \quad \text{La valeur efficace de la tension } u_2(t), \text{en volts [V]}$ $U_1 \quad \text{La valeur efficace de la tension } u_1(t), \text{en volts [V]}$

. d Les relations entre les intensités

Dans tous les cas que nous étudierons, le transformateur sera considéré comme parfait pour les courants, ainsi pour tous courants non nuls, la relation entre les valeurs efficaces I_1 et I_2 s'exprime ainsi :


$$m = \frac{I_1}{I_2}$$

Rapport de transformation [sans unités]


 $m = \frac{I_1}{I_2}$ I_1 I_2 I_3 I_4 I_4 I_2 I_3 I_4 I_4 I_4 I_5 I_6 I_7 I_8 I_8 I_9 I_9

. <u>e Le diagramme de Fresnel</u>

Un transformateur parfait est alimenté au primaire par une tension sinusoïdale u_1 (t). Il alimente une charge Z_c , telle que le courant i_2 (t) présente un déphasage d'un angle ϕ_2 avec la tension u_2 (t).

Il est possible d'évaluer l'intensité i_1 (t) du courant appelé au primaire à l'aide d'un diagramme de Fresnel. Ce courant dépend de la charge appliquée au secondaire.

La valeur de l'intensité efficace du courant I_2 dépend de la charge appliquée au secondaire, il en est de même pour le facteur de puissance $\cos \varphi_2$. Ces deux grandeurs imposent la valeur de l'intensité efficace du courant I_1 appelé au primaire, ainsi que le facteur de puissance du primaire, sachant que $\varphi_1 = \varphi_2$.

. f Le bilan des puissances

La puissance absorbée au primaire

 $\begin{array}{lll} P_1 & \text{La puissance active consomm\'ee au primaire en watts [W]} \\ U_1 & \text{La valeur efficace de la tension } u_1(t), \text{en volts [V]} \\ I_1 & \text{La valeur efficace de l'intensit\'e } i_1(t), \text{en amp\`eres } [A] \\ \phi_1 & \text{L'angle de d\'ephasage entre } u_1(t) \text{ et } i_1(t) \text{ en degr\'es } [°] \end{array}$

La puissance restituée au secondaire

 $\begin{array}{lll} P_2 & \text{La puissance active délivrée au secondaire en watts [W]} \\ P_2 = U_2.I_2\cos\phi_2 & U_2 \\ I_2 & \text{La valeur efficace de la tension } u_2(t), \text{en volts [V]} \\ I_2 & \text{La valeur efficace de l'intensit\'e } i_2(t), \text{en ampères [A]} \\ \phi_2 & \text{L'angle de d\'ephasage entre } u_2(t) \text{ et } i_2(t) \text{ en degr\'es [°]} \end{array}$

Du fait que le transformateur parfait ne subit aucune perte entre le primaire et le secondaire, la puissance active consommée au primaire est identique à celle délivrée au secondaire, ainsi :

 $\begin{array}{c} P_2 = P_1 \\ P_2 = P_1 \\ P_1 \\ D_2 \\ D_2 = P_2 \\ P_2 = P_2 \\ P_3 \\ D_4 \\ D_4 \\ D_4 \\ D_5 \\ D_6 \\ D_7 \\ D_8 \\ D_9 \\$

Du fait que le transformateur parfait ne subit aucune perte entre le primaire et le secondaire, la puissance réactive consommée au primaire et celle délivrée au secondaire est la même, ainsi :

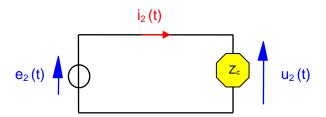
Q2 La puissance réactive délivrée au secondaire en V.A.R [vars]
Q1 La puissance réactive consommée au primaire en V.A.R [vars]
V.A.R : Volts ampères réactifs

S1 La puissance apparente au primaire en V.A [VA]
U1 La valeur efficace de la tension u1 (t), en volts [V]
I1 La valeur efficace de l'intensité i1 (t), en ampères [A]

S2 La puissance apparente au secondaire en V.A [VA]
U2 La valeur efficace de la tension u2 (t), en volts [V]
I2 La valeur efficace de l'intensité i2 (t), en ampères [A]

S2 La puissance apparente au secondaire en V.A [VA]
S3 La puissance apparente au secondaire en V.A [VA]

S4 La puissance apparente au secondaire en V.A [VA]


S5 La puissance apparente au primaire en V.A [VA]

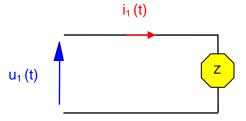
Le rendement, rapport entre la puissance active absorbée et la puissance active utile délivrée par le transformateur parfait prend la valeur particulière de 1.

$$\eta = \frac{P_2}{P_1} = 1$$

- Le rendement du transformateur parfait [sans unités]
- P₂ La puissance active délivrée au secondaire en watts [W]
 - La puissance active consommée au primaire en watts [W]

. g Le modèle électrique vu de la charge

Vu de la charge, le transformateur se comporte comme une source de tension parfaite e2 (t), cette tension est issue du primaire du transformateur suivant la relation :


$$m = -\frac{e_2(t)}{e_1(t)}$$
 Avec $e_1(t) = -u_1(t)$

$$e_1(t) = - u_1(t)$$

La tension u₁ (t) est sinusoïdale, nous pouvons utiliser une écriture complexe pour décrire le comportement du transformateur vu du secondaire :

$$\underline{\mathsf{U}}_2 = \underline{\mathsf{E}}_2 = \underline{\mathsf{Z}}_\mathsf{c}.\underline{\mathsf{I}}_2$$

. h Le modèle électrique vu de l'alimentation

Vu de l'alimentation, le transformateur se comporte comme une charge d'impédance Z. La tension u₁ (t) est sinusoïdale, nous pouvons utiliser une écriture complexe pour décrire le comportement du transformateur vu de l'alimentation :

$$U_1 = Z.I_1$$

Des relations précédentes en utilisant les relations entre les courants et les relations entre les tensions, nous pouvons écrire :

$$\underline{Z} = \frac{\underline{Z}_c}{m^2}$$

. <u>i La plaque signalétique</u>

Les tensions indiquées sur la plaque signalétique sont les valeurs nominales U_{1n} et U_{2n} des tensions u_1 (t) et u_2 (t) au primaire et au secondaire. La puissance apparente nominale S_n est également indiquée ainsi que la fréquence nominale f d'utilisation du transformateur. La plaque signalétique permet de calculer rapidement les grandeurs n'y figurant pas à l'aide des relations vues précédemment.

Attention, nous allons voir que la plaque signalétique du transformateur réel n'indique pas les mêmes grandeurs que celles du transformateur parfait.

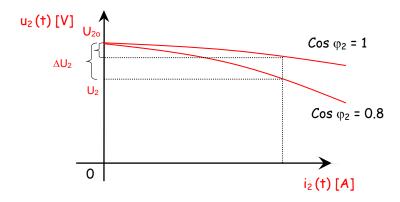
. III Le transformateur réel

. a Les différentes pertes

La puissance P_1 absorbée par le transformateur est plus grande que la puissance P_2 restituée au secondaire du transformateur, appelée également puissance utile disponible. La différence entre ces deux grandeurs représente toutes les pertes que nous devons prendre en compte avec le transformateur réel.

Ces pertes sont les suivantes :

i. Les pertes par effet Joule


Les pertes par effet Joule, appelées également pertes dans le cuivre, sont notées P_j ou P_c . Ce sont les pertes occasionnées par le passage du courant dans les enroulements du primaire et du secondaire. Ces pertes sont proportionnelles au carré de la valeur efficace de l'intensité du courant qui traverse chaque enroulement.

ii. Les pertes magnétiques

Les pertes magnétiques, appelées aussi pertes dans le fer sont notées P_{mag} ou P_{fer} . Ce sont les pertes dues aux fuites magnétiques, à l'hystérésis et enfin aux courants de Foucault. Ces pertes ne dépendent que de la valeur efficace U_1 de la tension u_1 (t), appliquée au primaire.

. b La chute de tension

Pour un transformateur réel, la valeur efficace de la tension U2 délivrée par le secondaire varie selon la charge. En l'absence de charge, aucun courant n'est délivré par le secondaire, le transformateur fonctionne à vide. Nous notons U_{2o} la tension dans ce cas, l'indice $_{o}$ est toujours utilisé pour le fonctionnement à vide.

La différence ΔU_2 entre la tension à vide U_{20} et la tension U_2 en charge s'appelle la chute de tension au secondaire du transformateur. La chute de tension dépend de la nature de la charge. La charge fixe la valeur de l'intensité du courant I_2 ainsi que le cos φ_2 . Ces deux grandeurs déterminent elles, la valeur efficace de la tension U2.

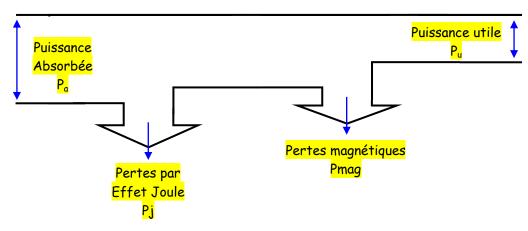
. c Le rapport de transformation :

La valeur efficace U1 de la tension u1 (t) qui alimente le primaire dans l'exemple précédent reste constante alors que la valeur efficace U2 de la tension u2 (t) au secondaire du transformateur diminue lorsque l'intensité du courant augmente. Le rapport de transformation ne peut donc pas garder la même définition que pour le transformateur parfait. Nous devons choisir une tension qui reste constante, quelque soit la charge utilisée, dans la mesure où la tension au primaire ne varie pas. Cette grandeur ne peut être que U20, la valeur efficace de la tension à vide au secondaire. Nous parlerons donc du rapport de transformation à vide my pour le transformateur réel, seul ce terme correspond au rapport de la tension obtenue au secondaire à vide U_{2o} si, la valeur efficace de la tension u_1 (t) au primaire prend sa valeur nominale U_{1nv}

$$m_{v} = \frac{U_{2o}}{U_{1n}}$$

 m_v Rapport de transformation à vide [sans unités] U_2 La valeur efficace de la tension u_2 (t), en volts [V] U_1 La valeur efficace de la tension u_1 (t), en volts [V]

Ce rapport de transformation à vide correspond également au rapport du nombre de spires du secondaire et du primaire, ainsi


- Rapport de transformation à vide [sans unités]
- N_2 Le nombre de spires de au secondaire [sans unités]
- Le nombre de spires de au primaire [sans unités]

$$m_v = \frac{N_2}{N_1}$$

Le bilan des puissances

Le bilan des puissances décline toutes les puissances, depuis la puissance absorbée jusqu'à la puissance utile, il prend évidemment en compte toutes les pertes.

Le bilan, peut être résumé à l'aide schéma suivant :

Le bilan met en évidence le fait que la puissance absorbée est obligatoirement la puissance la plus importante, elle ne cesse de diminuer en progressant vers la puissance utile qui est évidemment la plus faible, ainsi

$$P_2 = P_1 - P_j - P_{mag}$$

- $\begin{array}{lll} P_2 = P_1 P_j P_{mag} \\ P_j & \text{La puissance active délivrée au secondaire en watts [W]} \\ P_j & \text{La puissance active consommée au primaire en watts [W]} \\ P_j & \text{Les pertes par effet Joules en watts [W]} \\ P_{mag} & \text{Les pertes dans le fer en watts [W]} \end{array}$

La puissance absorbée au primaire

$$P_1 = U_1.I_1 \cos \varphi_1$$

- $P_1 = U_1.I_1 \cos \varphi_1$ $P_1 = U_1.I_1 \cos \varphi_1$ $P_2 = U_1.I_1 \cos \varphi_1$ $P_3 = U_1.I_2 \cos \varphi_1$ $P_4 = U_1.I_3 \cos \varphi_1$ $P_5 = U_1.I_4 \cos \varphi_1$ $P_6 = U_1.I_6 \cos \varphi_1$ $P_7 = U_1.I_6 \cos \varphi_1$ $P_8 = U_1.I_8 \cos \varphi_1$ $P_9 = U_1.I_9 \cos \varphi_1$ $P_1 = U_1.I_9 \cos \varphi_1$ $P_2 = U_1.I_9 \cos \varphi_1$ $P_3 = U_1.I_9 \cos \varphi_1$ $P_4 = U_1.I_9 \cos \varphi_1$ $P_5 = U_1.I_9 \cos \varphi_1$ $P_6 = U_1.I_9 \cos \varphi_1$ $P_7 = U_1.I_9 \cos \varphi_1$

 - l'angle de déphasage entre u1(t) et i1(t) en degrés [°]

La puissance restituée au secondaire

$$P_2 = U_2.I_2 \cos \varphi_2$$

- $P_2 = U_2.I_2 \cos \varphi_2$ La puissance active délivrée au secondaire en watts [W] U_2 La valeur efficace de la tension u_2 (t), en volts [V] I_2 La valeur efficace de l'intensité i_2 (t), en ampères [A]
 - L'angle de déphasage entre $u_2(t)$ et $i_2(t)$ en degrés $[^\circ]$

Au niveau des puissances réactives

- La puissance réactive consommée au primaire en V.A.R [vars]

- U_1 La valeur efficace de la tension $u_1(t)$, en volts [V] I_1 La valeur efficace de l'intensité $i_1(t)$, en ampères [A] ϕ_1 L'angle de déphasage entre $u_1(t)$ et $i_1(t)$ en degrés $[\circ]$ L'angle de déphasage entre $u_1(t)$ et $i_1(t)$ en degrés [°]

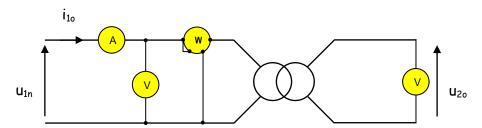
 $Q_1 = U_1.I_1 \sin \varphi_1$

La puissance réactive délivrée au secondaire en V.A.R [vars]

 $Q_2 = U_2.I_2 \sin \varphi_2$ U_2 U_2 U_3 U_4 U_2 U_3 U_4 U_2 U_3 U_4 U_4 U_5 U_4 U_5 U_5 U_6 U_7 U_8 U_8 U_9 U_9 U

.A.R : Volts ampères réactifs

Le rendement est le rapport entre la puissance utile P_u = P_2 délivrée par le secondaire, et la puissance absorbée par le primaire $P_a = P_1$


$$\eta = \frac{P_2}{P_1}$$

η Le rendement du transformateur parfait [sans unités]
 P₂ La puissance active délivrée au secondaire en watts [W]
 P₁ La puissance active consommée au primaire en watts [W]

Les pertes sont déterminées par la méthode des pertes séparées. Nous évaluons séparément les deux types de pertes, par effet Joule et magnétiques, en réalisant deux essais successifs, un essai à vide et un essai en court-circuit.

. e L'essai à vide

La valeur efficace U_1 de tension au primaire u_1 (t) est égale à sa valeur nominale U_{1n} . L'intensité du courant au secondaire est nulle, la puissance P2 délivrée par le secondaire est donc également nulle.

Mode opératoire

- Aucune charge n'est reliée au secondaire
- La tension u₁ (t) est amenée à sa valeur nominale
- Un wattmètre est branché pour évaluer la puissance P₁₀ absorbée par le primaire.
- Deux voltmètres relèvent les valeurs efficaces U_{1n} et U₂₀ des tensions u₁ (t) et u₂ (t).
- Un ampèremètre mesure la valeur efficace I₁₀ de l'intensité du courant i₁ (†).

Tous les appareils utilisés sont numériques, de type RMS, en position AC +DC.

Le wattmètre, W, indique une puissance P10. Elle représente la somme de toutes les puissances consommées par le transformateur.

$$P_{10} = P_u + P_i + P_{fer}$$

La puissance utile est nulle, P_u = P_2 = 0 W; la puissance absorbée P_1 au primaire correspond aux seules pertes par effet Joule P_j et pertes magnétiques, P_{fer} .

- \circ La puissance appelée est très faible, l'intensité du courant au primaire est donc également très faible, nous le considèrerons comme négligeable devant sa valeur nominale $I_{1o}{}^2 \! \ll I_{1n}{}^2$
- Les pertes dans le cuivre sont dues aux passages des courants dans les enroulements du primaire et du secondaire, or l'intensité du courant dans le secondaire est nulle donc les pertes par effet Joule ne se réduisent qu'au terme issu du primaire soit $P_{io} = R_1.I_{1o}^2$
- \circ Les pertes dans le fer, ont, elles, la valeur qui correspond à la tension nominale de l'alimentation u_1 (t) = U_{1n} .
- La puissance absorbée $P_{1o} = R_1.I_{1o}^2 + P_{mag}$ avec $R_1.I_{1o}^2$ négligeables devant P_{mag}

 $P_{1o} = P_{mag}$ $P_{1o} = P_{mag}$ P_{mag} Les pertes dans le fer pour $u_1(t) = U_{1n}$ en watts [W]

L'essai à vide permet donc de donner facilement :

Les pertes magnétiques pour une valeur de la tension au primaire,

Le rapport de transformation à vide m_v.

. <u>f L'essai en court-circuit</u>

La valeur efficace U_{1cc} de tension au primaire u_1 (t) est réduite à une valeur comprise entre 5 et 10 % de sa valeur nominale U_{1n} . La tension u_2 (t) est nulle du fait du court-circuit, la puissance P_2 délivrée par le secondaire est donc également nulle.

Mode opératoire

- L'enroulement du secondaire est court-circuité, un fil relie les bornes de sortie
- La tension u_1 (t) est réglée afin que l'intensité du courant au secondaire i_2 (t) soit égale à sa valeur nominale I_{2cc} .
- \triangleright Un wattmètre est branché pour évaluer la puissance P_{1cc} absorbée par le primaire.

- Un voltmètre relève la valeur efficace U_{1cc} de la tension u₁ (t).
- Deux ampèremètres mesurent les valeurs efficaces I_{1cc} et I_{2cc} des intensités des courants i_1 (t) et i_2 (t).

Tous les appareils utilisés sont numériques, de type RMS, en position AC +DC.

Le wattmètre, W, indique une puissance P_{1cc} . Elle représente la somme de toutes les puissances consommées par le transformateur.

$$P_{1cc} = P_u + P_j + P_{fer}$$

La puissance utile est nulle, P_u = P_2 = 0 W; la puissance absorbée P_1 au primaire correspond aux seules pertes par effet Joule P_i et pertes magnétiques, P_{fer} .

- Les pertes dans le cuivre sont dues aux passages des courants dans les enroulements du primaire et du secondaire, elles sont donc évaluées pour les valeurs nominales de ces deux courants; P_i est donné pour i_1 (t) = I_{1n} et i_2 (t) = I_{2n} .
- Les pertes dans le fer sont très faibles, elles sont en effet proportionnelles à la tension u_1 (t) qui est réduite; P_{mag} très faibles devant celles données avec u_1 (t) nominale.
- \circ La puissance absorbée $P_{1cc} = P_j + P_{mag}$ avec P_{mag} négligeables devant P_j

$$P_{1cc} = P_j$$
 $P_{1cc} = P_j$

La puissance consommée en court-circuit au primaire en watts [W]

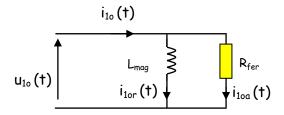
 $P_{1cc} = P_j$

Les pertes dans le cuivre pour $i_1(t) = I_{1n}$ et $i_2(t) = I_{2n}$ en watts [W]

L'essai en court-circuit permet donc de donner facilement :

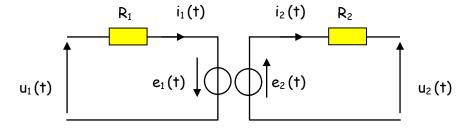
Les pertes par effet Joule pour les valeurs nominales des deux courants. Si ces courants varient, il faut recalculer les pertes dans le cuivre.

. g La plaque signalétique

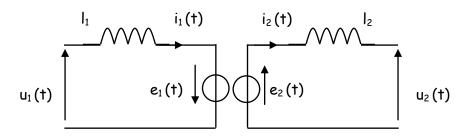

Les tensions indiquées sur la plaque signalétique sont la valeur nominale $\frac{U_{1n}}{U_{2n}}$ de la tension u_1 (t) au primaire et la valeur efficace de la tension à vide $\frac{U_{2n}}{U_{2n}}$ de la tension u_2 (t) au secondaire.

Il est également indiqué la puissance apparente nominale $\frac{S_n}{s_n}$ ainsi que la fréquence nominale $\frac{f}{s_n}$ d'utilisation du transformateur. La plaque signalétique permet de calculer rapidement les grandeurs n'y figurant pas à l'aide des relations vues précédemment.

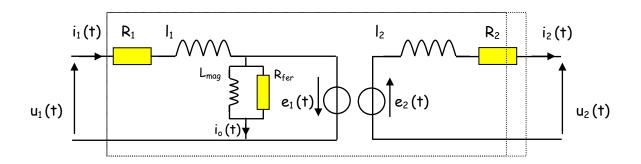
. <u>h Etude expérimentale du transformateur</u>


i. Prise en compte du courant magnétisant

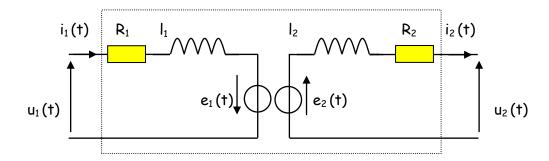
- \circ A vide, le secondaire n'est d'aucune utilité, seul le circuit du primaire joue un rôle magnétique. Le transformateur se comporte comme une bobine à noyau ferromagnétique, cette bobine peut être modélisée par une résistance R_{fer} en parallèle avec une inductance L_{mag} .
- \circ L'élément résistif R_{fer} est traversé par la composante active i_{10a} (t) du courant i_{10} (t). La puissance active consommée par cette résistance correspond aux pertes dans le fer.
- \circ L'élément inductif L_{mag} est traversé par la composante réactive $i_{1or}(t)$ du courant $i_{1o}(t)$. La puissance réactive consommée par cet élément est nécessaire à la magnétisation du circuit.


ii. Prise en compte des résistances des enroulements

Deux résistances R_1 et R_2 sont placées dans les circuits du primaire et du secondaire pour caractériser les puissances perdues par effet Joule dans les deux enroulements.


iii. Prise en compte des fuites magnétiques

Deux inductances de fuite l_1 et l_2 sont placées dans les circuits du primaire et du secondaire pour caractériser les pertes de flux magnétique dans les deux enroulements.


iv. Modèle complet du transformateur

Dans le modèle complet, nous retrouvons tous les éléments définis précédemment

. i Approximation de Kapp

Dans l'hypothèse de Kapp, le courant à vide i_{10} (t) est négligé devant le courant i_{1n} (t). Cela revient à négliger le courant magnétisant, les pertes par hystérésis et par courants de Foucault. Le modèle simplifié devient donc :

Le circuit du primaire peut se mettre en équation comme suit :

$$U_1 = -E_1 + R_1.I_1 + j.I_1 \omega.I_1$$

Le circuit du secondaire peut se mettre en équation comme suit :

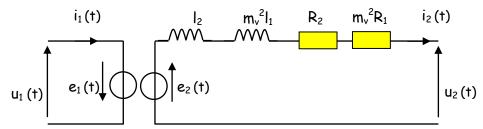
$$\underline{U}_2 = E2 - R_2.\underline{I}_2 - j.l_2\omega.\underline{I}_2$$

. j Relation entre les intensités :

L'intensité du courant i_{10} (t) étant négligée, le modèle du transformateur parfait est encore valable, en utilisant m_{ν} définit précédemment :

La relation
$$i_1(t) = i_{10}(t) - \frac{N_2}{N_1}i_2(t)$$
 devient : $m_v = -\frac{i_1(t)}{i_2(t)}$

Cette relation indique que les courants $i_1(t)$ et $i_2(t)$ sont en opposition de phase.


La relation entre les valeurs efficaces I_1 et I_2 ne tient pas compte du déphasage, le rapport de transformation à vide correspond donc au rapport des valeurs efficaces des intensités au primaire et au secondaire, ainsi

$$m_{v} = \frac{I_{1}}{I_{2}}$$

 m_v Rapport de transformation à vide [sans unités] I_1 La valeur efficace de l'intensité $i_1(t)$, en ampères [A] I_2 La valeur efficace de l'intensité $i_2(t)$, en ampères [A]

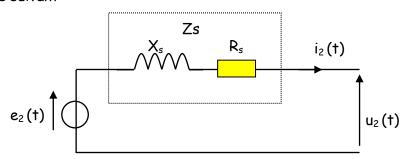
. k Modèle équivalent du transformateur :

Le modèle de Thévenin équivalent au transformateur vu du secondaire consiste à ramener tous les éléments du transformateur sur le circuit du secondaire. Connaissant la charge, il sera aisé de calculer les paramètres électriques du transformateur complet. Les éléments R₁ et $X_1 = I_1 \omega$ peuvent être déplacés au secondaire en les multipliant par m_v au carré, ainsi :

Au primaire, la tension u_1 (t) est directement appliquée au secondaire, la tension e_2 (t) est donc de la forme :

$$e_2(t) = -m_{v.}u_1(t)$$

Au secondaire, les éléments résistifs et inductifs peuvent être associés :


Les deux réactances en série se comportent comme une réactance unique notée :

$$Xs = m_v^2 X_1 + X_2 = (m_v^2 I_1 + I_2).\omega.$$

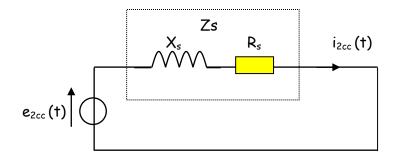
Les deux résistances en série se comportent comme une résistance unique notée :

$$R_s = m_v^2 R_1 + R_2$$

D'où le modèle suivant :

 Z_s , l'impédance équivalente aux deux éléments Rs et Xs s'écrit sous forme complexe :

$$Z_s = R_s + j X_s$$


La tension $e_2(t)$ étant égale à - $m_v.u_1(t)$, sa valeur efficace est donc égale à U_{2o} .

Le circuit du secondaire peut se mettre en équation comme suit :

$$U_2 = U_{20} - R_s \cdot I_2 - jX_s \cdot I_2$$

Calcul des éléments du modèle de Thévenin :

Lors de l'essai en court-circuit, le modèle de Thévenin équivalent au transformateur vu du secondaire devient:

Les éléments R_s et X_s peuvent être déterminés à l'aide des calculs suivants :

La puissance active P_{1cc} absorbée par le primaire représente dans le modèle présenté cidessus, les pertes par effet Joule dans la résistance équivalente R_{s} .

$$R_s = \frac{P_{1cc}}{I_{2cc}^2}$$

 $R_{s} = \frac{P_{lcc}}{I_{2cc}^{2}}$ $R_{s} = \frac{P_{lcc}}{I_{2cc}^{2}}$ $R_{s} = \frac{P_{lcc}}{I_{2cc}^{2}}$ $R_{s} = \frac{P_{lcc}}{I_{2cc}^{2}}$ La puissance consommée en court-circuit au primaire en watts [W] I_{2cc}^{2} $Le carré de la valeur efficace de l'intensité <math>i_{2cc}(t)$, en ampères 2 [A 2]

La tension aux bornes de Z_s , l'association de R_s et X_s est de la forme :

$$\underline{\mathsf{E}}_{\mathsf{scc}} = \underline{\mathsf{Z}}_{\mathsf{s}}.\underline{\mathsf{I}}_{\mathsf{2cc}}$$

La valeur de l'impédance complexe Z_s se déduit donc de cette écriture :

$$Z_s = \frac{m_v U_{1cc}}{I_{2cc}}$$

 $Z_s = \frac{m_v U_{1cc}}{I_{2cc}}$ $Z_s = \frac{m_v U_{1cc}}{I_{2cc}}$ U_{1cc} $La valeur efficace de la tension <math>u_{1cc}(t)$, en ampères [A]

Connaissant R_s et Z_s , la réactance $\underline{X}_s = j.l_s \omega$ se déduit de la relation suivante :

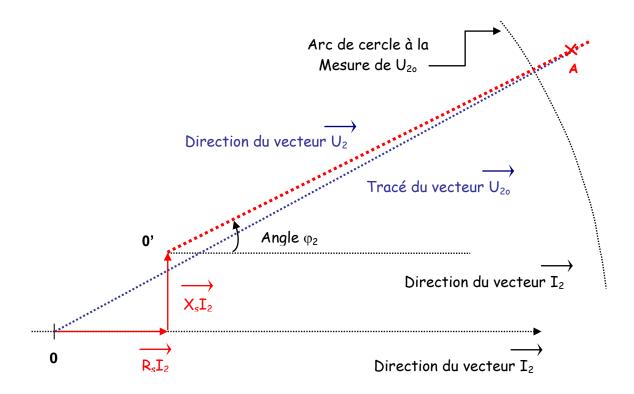
$$Z_s = \sqrt{R_s^2 + X_s^2}$$

m Evaluation de la chute de tension au secondaire par construction graphique

Pour réaliser la construction de Fresnel, afin d'évaluer la chute de tension ΔU_2 au secondaire du transformateur, nous devons connaître :

- Les paramètres m_v, R_s et X_s, ils sont calculés à l'aide des relations précédentes
- La charge utilisée, elle fixe les termes I₂ et φ₂

Le transformateur est alimenté sous sa tension nominale U_{1n} , la tension E_s est donc :


$$U_{20} = m_{v.}U_{1n.}$$

Pour calculer la chute de tension ΔU_2 au secondaire, nous utiliserons la relation suivante :

$$\underline{U}_2 = \underline{U}_{20} - R_s \cdot \underline{I}_2 - jX_s \cdot \underline{I}_2$$

Réaliser la construction graphique comme suit :

- Se donner une origine O
- > Se donner une échelle de correspondance en volts / centimètre
- Il faut tout d'abord calculer les termes Rs.I2 et Xs.I2
- \triangleright Tracer la direction de $\overrightarrow{I_2}$.
- ightharpoonup Placer à partir de O, le vecteur $\overrightarrow{R_sI_2}$.
- Placer perpendiculairement et à la suite du premier vecteur, le vecteur $\overrightarrow{X_sI_2}$.
- La somme de ces deux vecteurs donne le vecteur OO'.
- $\qquad \hbox{Tracer à partir de O', la direction $de \overrightarrow{U_2}$ d'un angle ϕ_2 par rapport $\grave{a} \overrightarrow{I_2}$ }.$
- Tracer l'arc de cercle de centre O dont le rayon est égal à la valeur efficace de U20.
- Placer le point d'intersection A, entre les demies droites caractérisant U2 et U20.
- Il ne reste plus qu'à mesurer le segment 0'A, image de la valeur de la tension U2.

<u>m Calcul approché de la chute de tension au secondaire</u> :

Si Les grandeurs $R_s.I_2$ et $X_s.I_2$ sont négligeables devant la tension U_{20} , les droites OA et O'A peuvent être considérées comme parallèles. Le calcul de la chute de tension peut être alors réalisé à l'aide d'une formule approchée

 $\Delta U_2 = R_{c_1}I_{2_1}\cos\theta_2 + X_{c_1}I_{2_2}\sin\theta_2$

 ΔU_2 La chute de tension au secondaire en exprimée en volts [V]

 R_s La résistance équivalente ramenée au secondaire en ohms $[\Omega]$

 I_2 La valeur efficace de l'intensité i_2 (t), en ampères [A]

 p_2 L'angle de déphasage entre $u_2(t)$ et $i_2(t)$ en degrés [°]

 X_s L a réactance équivalente ramenée au secondaire en ohms $[\Omega]$